Role of malonyl-CoA in heart disease and the hypothalamic control of obesity.
نویسندگان
چکیده
Obesity is an important contributor to the risk of developing insulin resistance, diabetes, and heart disease. Alterations in tissue levels of malonyl-CoA have the potential to impact on the severity of a number of these disorders. This review will focus on the emerging role of malonyl-CoA as a key "metabolic effector" of both obesity and cardiac fatty acid oxidation. In addition to being a substrate for fatty acid biosynthesis, malonyl-CoA is a potent inhibitor of mitochondrial carnitine palmitoyltransferase (CPT) 1, a key enzyme involved in mitochondrial fatty acid uptake. A decrease in myocardial malonyl-CoA levels and an increase in CPT1 activity contribute to an increase in cardiac fatty acid oxidation. An increase in malonyl-CoA degradation due to increased malonyl-CoA decarboxylase (MCD) activity may be one mechanism responsible for this decrease in malonyl-CoA. Another mechanism involves the inhibition of acetyl-CoA carboxylase (ACC) synthesis of malonyl-CoA, due to AMP-activated protein kinase (AMPK) phosphorylation of ACC. Recent studies have demonstrated a role of malonyl-CoA in the hypothalamus as a regulator of food intake. Increases in hypothalamic malonyl-CoA and inhibition of CPT1 are associated with a decrease in food intake in mice and rats, while a decrease in hypothalamic malonyl-CoA increases food intake and weight gain. The exact mechanism(s) responsible for these effects of malonyl-CoA are not clear, but have been proposed to be due to an increase in the levels of long chain acyl CoA, which occurs as a result of malonyl-CoA inhibition of CPT1. Both hypothalamic and cardiac studies have demonstrated that control of malonyl-CoA levels has an important impact on obesity and heart disease. Targeting enzymes that control malonyl-CoA levels may be an important therapeutic approach to treating heart disease and obesity.
منابع مشابه
Role of malonyl-CoA in the hypothalamic control of food intake and energy expenditure.
The brain plays an important role in the regulation of energy balance in higher animals. Global energy balance is monitored by sets of neurons in the hypothalamus that respond to peripheral hormonal and afferent neural signals that sense the energy status. Malonyl-CoA, an intermediate in the biosynthesis of fatty acids, appears to function in this hypothalamic energy-sensing system. The steady-...
متن کاملHypothalamic malonyl-coenzyme A and the control of energy balance.
An intermediate in the fatty acid biosynthetic pathway, malonyl-coenzyme A (CoA), has emerged as a major regulator of energy homeostasis not only in peripheral metabolic tissues but also in regions of the central nervous system that control satiety and energy expenditure. Fluctuations in hypothalamic malonyl-CoA lead to changes in food intake and peripheral energy expenditure in a manner consis...
متن کاملTargeting intermediary metabolism in the hypothalamus as a mechanism to regulate appetite.
The central nervous system mediates energy balance (energy intake and energy expenditure) in the body; the hypothalamus has a key role in this process. Recent evidence has demonstrated an important role for hypothalamic malonyl CoA in mediating energy balance. Malonyl CoA is generated by the carboxylation of acetyl CoA by acetyl CoA carboxylase and is then either incorporated into long-chain fa...
متن کاملEffects of Teucrium polium aerial parts extracts on malonyl-CoA decarboxylase level
Malonyl-CoA decarboxylase (MCD) is an enzyme involved in the decarboxylation of malonyl-CoA to acetyl-CoA. In order to explore the hypothesis that the changing plant materials’ MCD activity level can serve as therapy to diabetics, the effect of Teucrium polium compounds was studied in a diabetic rat model. In this experimental study, two groups of rats, a control and a diabetic group, each incl...
متن کاملThe effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart
Objective(s): This study intended to investigate the effects of Ginsenoside-Rbl (Gs-Rbl) on fatty acid β-oxidation (FAO) in rat failing heart and to identify potential mechanisms of Gs-Rbl improving heart failure (HF) by FAO pathway dependent on AMP-activated protein kinase (AMPK). Materials and Methods: Rats with chronic HF, induced by adriamycin (Adr), were randomly grouped into 7 groups. Gs-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 73 2 شماره
صفحات -
تاریخ انتشار 2007